

for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 18/0373 of 16/05/2018

(English language translation, the original version in Czech language)

Technical Assessment Body issuing the Technical and Test Institute for Construction	
Trade name of the construction product	MEMOCHEM KİMYASALDÜBEL
Product family to which the construction product belongs	Product area code: 33 Bonded injection type anchor for use in uncracked concrete
Manufacturer	YOLDAŞ ENDÜSTRİ ÜRÜNLERİ SAN. VE TİC. A.Ş. DES Sanayi Sitesi 1. Cadde No:42 Yukarı.Dudullu /Ümraniye 34775 İstanbul, Turkey
Manufacturing plant(s)	Plant 1
This European Technical Assessment contains	15 pages including 12 Annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330499-00-0601

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MEMOCHEM KİMYASALDÜBEL modified Epoxy acrylate resin without styrene for uncracked concrete is a bonded anchor consisting of a cartridge with injection mortar and a steel element. The steel elements consists of a commercial threaded rods, a hexagon nut and a washer. The steel elements are made of galvanized steel or stainless steel.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Steel failure (tension)	See Annex C 1
Combined pull-out and concrete failure	See Annex C 2
Concrete cone failure	See Annex C 2
Edge distance to prevent splitting under load	See Annex C 2
Robustness	See Annex C 2
Maximum setting torque moment	See Annex B 2
Minimum edge distance and spacing	See Annex B 2
Steel failure (shear)	See Annex C 1
Pry-out failure	See Annex C 3
Concrete edge failure	See Annex C 3
Displacements	See Annex C 4
Product description material	See Annex A 4

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (See Annex V to Regulation (EU) No 305/2011) given in the following table applies.

¹ Official Journal of the European Communities L 254 of 08.10.1996

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to		
use in concrete	concrete, structural elements (which		1
	contributes to the stability of the	-	1
	construction works) or heavy units		

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

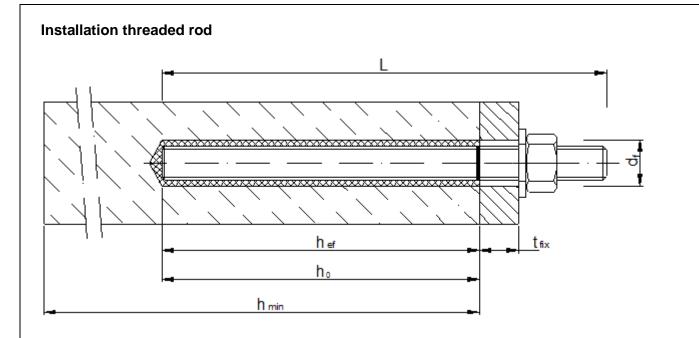
The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

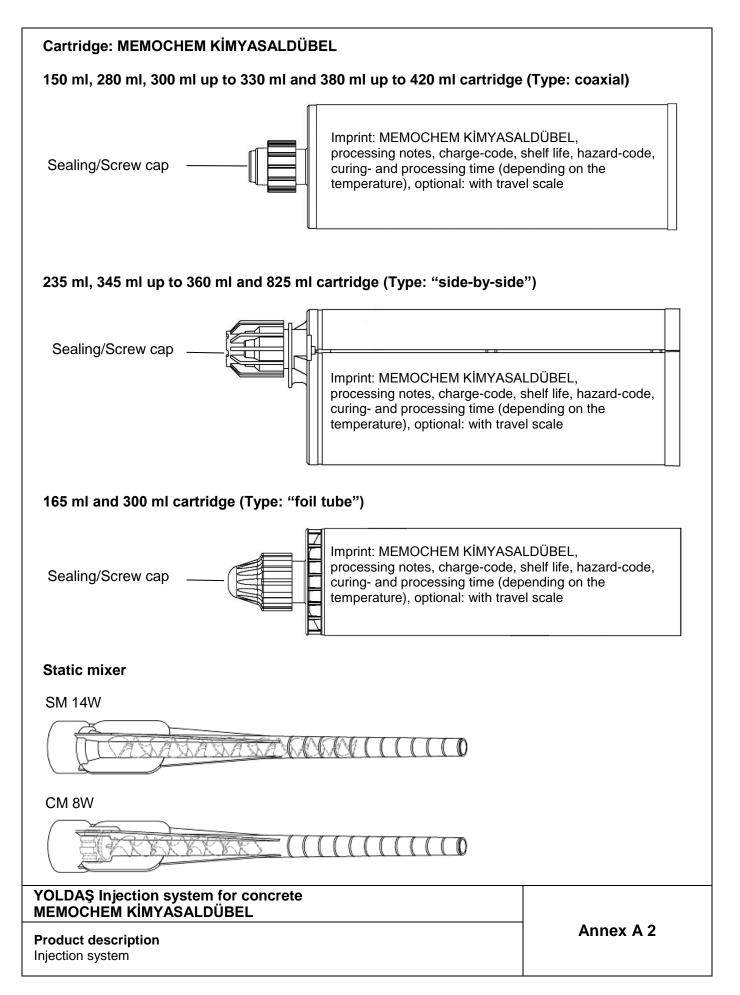
The notified certification body involved by the manufacturer shall issue an certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical assessment.


In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technický a zkušební ústav stavební Praha, s.p without delay.

Issued in Prague on 16.05.2018

By

Ing. Mária Schaan Head of the Technical Assessment Body


² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

- d_f = diameter of clearance hole in the fixture
- t_{fix} = thickness of fixture
- h_{ef} = effective embedment depth
- h_0 = depth of drill hole
- h_{min} = minimum thickness of member

YOLDAŞ Injection system for concrete MEMOCHEM KİMYASALDÜBEL

Product description Installed conditions

Threaded rod M8, M10, M12, M16, M20, M24 with washer and hexagon nut Lges d₁ hef 1 Commercial standard threaded rod with: Materials, dimensions and mechanical properties acc. Table A1 -Inspection certificate 3.1 acc. to EN 10204:2004 -Marking of embedment depth -YOLDAŞ Injection system for concrete MEMOCHEM KİMYASALDÜBEL Annex A 3 **Product description** Threaded rod

	Designation	Material			
	eel, zinc plated (Steel acc. to EN 1				
	ic plated \geq 5 µm acc. to EN ISO 4042				09 and
:1	ISO 10684:2004+AC:2009 or shera	rdized ≥ 40 µm acc. to L 1		N 17668:2016-06 f _{uk} =400 N/mm²; f _{vk} =240 N/mm²; A ₅	> 90/ fractura alangatia
				f _{uk} =400 N/mm²; f _{yk} =240 N/mm²; A ₅	
	Anchor rod	Property class acc. to		f _{uk} =500 N/mm²; f _{yk} =300 N/mm²; A ₅	
		EN ISO 898-1:2013		f _{uk} =500 N/mm ² ; f _{vk} =400 N/mm ² ; A ₅	
				f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ; A ₅	0
		Dranarti (alaga	4	for anchor rod class 4.6 or 4.8	· · · · · · · · · · · · · · · · · · ·
	Hexagon nut	Property class acc. to	5	for anchor rod class 5.6 or 5.8	
	hoxagon nat	EN ISO 898-2:2012	8	for anchor rod class 8.8	
	Washer,				
	(e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip ga	alvanised or sherardized	
ti	ainless steel (Material 1.4401 / 1.44	404 / 1.4571 / 1.4362 or	1.45	78, acc. to EN 10088-1:2014)	
-		Property class		f _{uk} =500 N/mm²; f _{yk} =210 N/mm²; A ₅	
	Anchor rod	acc. to		f _{uk} =700 N/mm²; f _{yk} =450 N/mm²; A ₅	
		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm²; f _{yk} =600 N/mm²; A ₅	> 8% fracture elongation
		Property class		for anchor rod class 50	
	Hexagon nut	acc. to	70	for anchor rod class 70	
		EN ISO 3506-1:2009	80	for anchor rod class 80	
	Washer, (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)			4571 / 1.4362 or 1.4578, EN 100	88-1:2014
į	gh corrosion resistance steel (Mat	terial 1.4529 or 1.4565,			
1	Anchor rod	Property class acc. to EN ISO 3506-1:2009	-	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A ₅	
			-	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; A_5	
		EN 150 3506-1.2009		f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A ₅	> 8% fracture elongation
2		Property class	50	for anchor rod class 50	
	Hexagon nut	acc. to EN ISO 3506-1:2009	70	for anchor rod class 70	
	Washer,		80	for anchor rod class 80	
	(e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.4	565, a	ICC. to EN 10088-1: 2014	
N	OLDAS Injection system for IEMOCHEM KIMYASALDÜB				Annex A 4

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- · Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Uncracked concrete

Temperature range:

- T1: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- T2: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 055 and Fpr EN 1992-4:2017

Concrete condition:

- · I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete
- · I2 installation in water-filled drill holes (not sea water) and use in service in dry or wet concrete

Installation:

- Hole drilling by hammer or compressed air drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 - Downward and horizontal and upwards (e.g. overhead) installation.

YOLDAŞ Injection system for concrete MEMOCHEM KİMYASALDÜBEL

Intended use

Specifications

Table B1: Installation parameters for threaded rod

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	
Nominal drill hole diameter do [n		10	12	14	18	24	28	
Effective appearage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	
Diameter of steel brush	d₀ [mm] ≥	12	14	16	20	26	30	
Torque moment max T _{fix} [Nm] ≤		10	20	40	80	120	160	
Thickness of fixture	t _{fix,min} [mm] >	0						
	t _{fix,max} [mm] <			15	500			
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d₀						
Minimum spacing	S _{min} [mm]	40	50	60	80	100	120	
Minimum edge distance	C _{min} [mm]	40	50	60	80	100	120	

Steel brush RBT

Table B2: Parameter cleaning and setting tools

Threaded Rod	d₀ Drill bit - Ø		d⊾ sh - Ø	d _{⊳,min} min. Brush - Ø
(mm)	(mm)	(m	ım)	(mm)
M8	10	RBT 10	12	10,5
M10	12	RBT 12	14	12,5
M12	14	RBT 14	16	14,5
M16	18	RBT 18	20	18,5
M20	24	RBT 24	26	24,5
M24	28	RBT 28	30	28,5

Hand pump (volume 750 ml) Drill bit diameter (d_o): 10 mm to 20 mm and anchorage depth up to 240 mm

YOLDAŞ Injection system for concrete MEMOCHEM KİMYASALDÜBEL

Intended use Installation parameters Cleaning and setting tools

Recommended compressed air tool (min 6 bar) All applications

Annex B 2

Installation instru	ctions	
	1 Drill with hammer drill a hole into the base material to the required by the selected anchor (Table B1). In case of al shall be filled with mortar.	
(Attention! Standing water in the bore hole must be re	emoved before cleaning.
4x	2a Starting from the bottom or back of the bore hole, blow the compressed air (min. 6 bar) or a hand pump (Annex B2) the bore hole ground is not reached an extension shall be	ne hole clean with a minimum of four times. If
or	The hand-pump can be used for anchor sizes up to bore	hole diameter 20 mm.
4x	For bore holes larger then 20 mm or deeper 240 mm, co must be used.	mpressed air (min. 6 bar)
************ 4x	2b Check brush diameter (Table B2) and attach the brush to or a battery screwdriver. Brush the hole with an approp (Table B2) a minimum of four times. If the bore hole ground is not reached with the brush, a b shall be used (Table B2).	priate sized wire brush > $d_{b,min}$
or	 2c Finally blow the hole clean again with compressed air (m (Annex B2) a minimum of four times. If the bore hole gro extension shall be used. The hand-pump can be used for anchor sizes up to bore For bore holes larger than 20 mm or deeper 240 mm, comust be used. 	und is not reached an hole diameter 20 mm.
458	After cleaning, the bore hole has to be protected aga appropriate way, until dispensing the mortar in the b cleaning repeated has to be directly before dispension In-flowing water must not contaminate the bore hole	ore hole. If necessary, the ng the mortar.
	3. Attach a supplied static-mixing nozzle to the cartridge an correct dispensing tool. Cut off the foil tube clip before us For every working interruption longer than the recommer (Table B3) as well as for new cartridges, a new static-mi	se. nded working time
I her	 Prior to inserting the anchor rod into the filled bo embedment depth shall be marked on the anchor rods. 	re hole, the position of the
min, 3 full stroke	 Prior to dispensing into the drill hole, squeeze out separa strokes and discard non-uniformly mixed adhesive comp a consistent grey colour. For foil tube cartridges it must b full strokes. 	onents until the mortar shows
	system for concrete	
	AJALUUBEL	Annex B 3
Intended use Installation instructions	8	

Installation instr	uctions (continuation)
	6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B3.
	7. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.
	The anchor should be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
+20°C	 Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).
	 After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.
Table B3: Minim	
Concrete temperatu	re working time minimum curing time

working time	minimum curing time	
[min]	[min]	
45	180	
25	120	
20	100	
15	80	
6	45	
4	25	
2	20	
+5°C to +40°C		
	[min] 45 25 20 15 6 4 2	

YOLDAŞ Injection system for concrete MEMOCHEM KİMYASALDÜBEL

Intended use

Installation instructions (continuation) Curing time

Table C1:Characteristic values for steel tension resistance and steel shear resistance
of threaded rods

Size				M 8	M 10	M 12	M 16	M 20	M24	
Char	acteristic tension resistance, Steel failure									
Steel	, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141	
Steel	, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	
Steel	, Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	
Stain	less steel A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	17	
Stain	less steel A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	
Stain	less steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	
Char	acteristic tension resistance, Partial safety factor									
Steel	, Property class 4.6	γ _{Ms,N} ¹⁾	[-]			2	,0			
Steel	, Property class 4.8	γ _{Ms,N} ¹⁾	[-]			1	,5			
Steel	, Property class 5.6	γ _{Ms,N} ¹⁾	[-]			2	,0			
Steel	, Property class 5.8	γ _{Ms,N} ¹⁾	[-]			1	,5			
Steel	, Property class 8.8	γ _{Ms,N} ¹⁾	[-]			1	,5			
Stain	less steel A4 and HCR, Property class 50	γ _{Ms,N} ¹⁾	[-]			2,	86			
Stain	less steel A4 and HCR, Property class 70	γ _{Ms,N} ¹⁾	[-]	1,87						
Stain	less steel A4 and HCR, Property class 80	γ _{Ms,N} ¹⁾	[-]	1,6						
Char	acteristic shear resistance, Steel failure									
	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9	14	20	38	59	85	
Without lever arm	Steel, Property class 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	
sver	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	14	
out le	Stainless steel A4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	
Vitho	Stainless steel A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	12	
_	Stainless steel A4 and HCR, Property class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	14	
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	44	
Ē	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	56	
With lever arm	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	89	
h lev	Stainless steel A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	56	
Wit	Stainless steel A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	78	
	Stainless steel A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	89	
Char	acteristic shear resistance, Partial safety factor									
Steel	, Property class 4.6	γ _{Ms,V} ¹⁾	[-]			1,	67			
Steel	, Property class 4.8	γ _{Ms,V} ¹⁾	[-]			1,	25			
Steel	, Property class 5.6	γ _{Ms,V} ¹⁾	[-]			1,	67			
Steel	, Property class 5.8	γ _{Ms,V} ¹⁾	[-]			1,	25			
Steel	, Property class 8.8	γ _{Ms,V} 1)	[-]			1,	25			
Stain	less steel A4 and HCR, Property class 50	γ _{Ms,V} ¹⁾	[-]			2,	38			
Stain	less steel A4 and HCR, Property class 70	γ _{Ms,V} 1)	[-]			1,	56			
Stain	less steel A4 and HCR, Property class 80	γ _{Ms,V} ¹⁾	[-]			1,	33			

YOLDAŞ Injection system for concrete MEMOCHEM KİMYASALDÜBEL

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods Annex C 1

Table C2: Characteristic values under tension loads in uncracked concrete

Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	
Steel failure			•			•				
Characteristic tension res	sistance	N _{Rk,s}	[kN]	see Table C1						
Partial safety factor		γ _{Ms,N}	[-]			see Ta	ble C1			
Combined pull-out an	id concrete cone failu	ire								
Characteristic bond resis	tance in uncracked concr	ete C20/25								
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	9,5	9,0	8,5	8,5	8,0	8,0	
40°Ċ/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	9,5	9,0	8,5	8,5	8,0	8,0	
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	8,0	8,0	7,5	7,5	7,0	7,0	
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,0	8,0	7,5	7,5	7,0	7,0	
	·		5/30	1,06						
		C30/37		1,12						
Increasing factors for cor Ψ_{c}	ocrete	C35/45 C40/50		1,19 1,23						
νc		C40/50 C45/55		1,25						
			0/60							
Concrete cone failure										
Factor		k _{ucr, N}	[-]			11	,0			
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]			2 c	cr,N			
Splitting failure										
	h/h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef}\left(2,5-\frac{h}{h_{ef}}\right)$						
	h/h _{ef} ≤ 1,3	-		2,4 h _{ef}						
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,sp}						
Robustness to installation	n (dry and wet concrete)	h _{ef} < 10d	γinst	1,0						
Robustness to installation	n (dry and wet concrete)	h _{ef} ≥ 10d	γinst		1,0			1,2		
Robustness to installation (dry and wet concrete)				1,2						

YOLDAŞ Injection system for concrete MEMOCHEM KİMYASALDÜBEL

Performances

Characteristic values under tension loads in uncracked concrete

Annex C 2

Table C3: Characteristic values under shear loads in uncracked concrete

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	
Steel failure without lever arm									
Characteristic shear resistance,	$V_{Rk,s}$	[kN]			see Ta	ble C1			
Partial safety factor	γMs,∨	[-]			see Ta	ble C1			
Ductility factor	k ₇	[-]			1,	0			
Steel failure with lever arm									
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	see Table C1						
Partial safety factor	γ̂Ms,∨	[-]			see Ta	ble C1			
Concrete pry-out failure									
Factor	k ₈	[-]			2,	0			
Robustness to installation	γinst	[-]			1,	0			
Concrete edge failure									
Effective length of fastener	l _f	[mm]	I _f = min(h _{ef} ; 8 d _{nom})						
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	
Robustness to installation	γinst	[-]		•	1,	0	•		

YOLDAŞ Injection system for concrete MEMOCHEM KİMYASALDÜBEL

Performances

Characteristic values under shear loads in uncracked concrete

Annex C 3

Anchor size thread	ed rod		M 8	M 10	M 12	M 16	M 20	M24
Uncracked concre	e C20/25							
Temperature range I: 40°C/24°C	δ _{N0} -factor	[mm/(N/mm²)]	0,02	0,02	0,03	0,04	0,05	0,06
	δ _{N∞} -facto	r [mm/(N/mm²)]	0,04	0,04	0,04	0,05	0,05	0,06
Temperature range II: 80°C/50°C	δ _{N0} -factor	· [mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07
	δ _{N∞} -facto	r [mm/(N/mm²)]	0,07	0,07	0,08	0,08	0,08	0,08
Table C5: Dis	-	nt under shear loa	d ¹⁾ M 8	M 10	M 12	M 16	M 20	M24
Anchor size thread	led rod			M 10	M 12	M 16	M 20	M24
Anchor size thread For uncracked co	led rod			M 10 0,02	M 12 0,02	M 16 0,01	M 20 0,01	M24
Anchor size thread For uncracked co All temperature ranges	led rod ncrete C2 δ_{V0} -factor $\delta_{V\infty}$ -factor displacemer	0/25 [mm/(kN)] [mm/(kN)]	M 8					
Anchor size thread For uncracked co All temperature ranges	led rod ncrete C2 δ _{V0} -factor δ _{V∞} -factor displacemer V; V;	0/25 [mm/(kN)] [mm/(kN)]	M 8	0,02	0,02	0,01	0,01	0,01